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The three leading terms of the asymptotic expansion of the solution of the problem of convective heat transfer between a thin 
plate of finite length and arbitrary surface temperature and an unbounded uniform fluid flow are obtained analytically for low 
P&let and Prandtl numbers. 0 2001 Elsevier Science Ltd. All rights reserved. 

Despite the fact that, in practice, the case when the Reynolds and Prandtl numbers satisfy the conditions 
Re B 1, Pr G 1 is rarely observed [l], the problem of convective heat transfer between a plate of finite 
length and an unbounded uniform fluid flow is still of interest as a problem in mathematical physics, 
which is often encountered in different areas of applied mechanics, for example, in contact problems 
of the theory of elasticity [2], in problems of the freezing of seeping soils [3], etc. When a constant 
temperature is maintained on the plate surface, there is an analytical solution, which has been obtained 
by several researchers [2, 4-71 and which is a series in Mathieu functions. This fact makes it difficult 
to use both in numerical and qualitative analysis. In this paper, unlike those mentioned, a representation 
of the solution in terms of Mathieu functions is not used, and the asymptotic form is constructed directly 
using the apparatus of integral equations and analytical functions of a complex variable. 

1. FORMULATION OF THE PROBLEM 

The steady convective heat transfer between a thin plate of finite length and an unbounded uniform 
fluid flow (see Fig. 1) is described by the following system of equations [8] 

Pe 89Bx = A9, x,y~ D 
e = 0, x* + y* + Do; e=fix), X~ r=[-~,i] (1.1) 

where x and y are dimensionless Cartesian coordinates (referred to the half-length of the plate), D is 
the flow region (the exterior of the section I = [-1, l]), 8 is the temperature, measured from the 
temperature at infinity,@) is the specified temperature distribution on the plate, and Pe is the P&let 
number, constructed from the half-length of the plate, the free-stream velocity and the thermal diffusivity 
of the fluid. 

Note that the problem is symmetrical about they = 0 axis, and hence the condition &I/& = 0 is satisfied 
on the sections 1x1~ 1 of this axis. 

We will assume that the functionf(x) can be approximated by the series 

f(x)= E CkTk(X) 
k=O 

(1.2) 

where Tk are Chebyshev polynomials of the first kind [9]. In view of the linearity of system (1.1) it is 
sufficient to consider the casef(X) = T&), k 3 0. 

Using the method of boundary integral equations, problem (1.1) can be reduced to the following 
integral equation [lo] 

(1.3) 
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where 

p(x) = &3By, x E r, y = +o 

After solving it the overall heat flux to the plate 2Q and the temperature O&y) in the region D can be 
determined from the formulae 

._ 

Q = i cl034 
-I 

(l-4) 

It is convenient to introduce the following notation 

v(5) = M3exp ( ) -F{ , O(x.y) = -0(r;y)exp(-Fr) 

We can then obtain the following integral representation for the function O(x,y) from (1.5) 

WX,Y) = ij, Y(5)%(~+fd5. x,ycD 

while from condition (1.3) we obtain the boundary equation 

@(x,y)lr=-Tk(X)exp -$x , 
( 1 

kP0 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

2. THE CASE OF LOW PBCLET NUMBER 

WhenPe&1andx2+y2- 1 the kernel of integral operator (1.7) and the right-hand side of Eq. (1.8) 
can be expanded asymptotically. We will have [9] 

Pe 
K, -r =(m-lnr)+ ( ) Pe2 r2 

2 
T[m+I-Inr)+O(Pe4), m=ln;-C 

Tk(x)exp 
( 1 

-?A. = T&r)- %[T,+,(x)+ I;k-,,w + 

(2.1) 

(2.2) 

where C is Euler’s constant. 
To carry out an asymptotic analysis we will assume that v(c), Q and O&y) can be represented in the 

form of asymptotic series in powers of Pe 

Fig. 1 



Heat transfer between a plate and an unbounded uniform fluid flow 83 

v(S) = v&) + Pe VI (5) + Pe2 v2(S) + We31 (2.3) 

Q = Q. + PeQt + Pe2Q2 + 0(Pe3) (2.4) 

0(x,y)=Q0(x,y)+Pe0,(x,y)+Pe~02(x,y)+O(Pe3) (2.5) 

The relation m(Pe) in expansion (2.1) of the kernel of the integral equation indicates that terms of the 
order of Pe’ln’Pe must be present in these representations. The form of (2.3)-(2.5) denotes that, when 
constructing the solution formally, m is assumed to be a constant quantity and in fact Vi(c), Qj, 
Oi (x, y) will depend on Pe via m. This procedure enables us to reduce and adjust the calculations, since 
the coefficients of Pe’ obtained using it depend only slightly (logarithmically) on Pe and do not spoil 
the asymptotic form of expansions (2.3)-(2.5). 

Substituting (2.3) and (2.4) into (1.4) and (1.6) we obtain 

(2.6) 

q; = i Vi<5)& 
-I 

(2.7) 

(where S, is the Kronecker delta, $ = 1 - 5,). 
We substitute (2.1), (2.3) and (2.5) into representation (1.7) of the function 0(x, y) and separate it 

into orders. We obtain the integral representations 

Qi(X,y)=~-~i v,(5)In’d5+6i2F(x,y), i=O,1,2 
I 

where 

F(x.Y)=--$ v,(5)f2[fn+l -In@5 
I 

w9 

(2.9) 

We further substitute expressions (2.2) and (2.5) into Eq. (1.8) and we also separate the relation obtained 
into orders. We obtain boundary conditions for the functions O&X, y) 

i=O,l,2; /c>O (2.10) 

Hence, problem (1.1) for low Pe reduces to a series of problems for the logarithmic potentials 
(2.7)-(2.10), covering the three leading terms of the asymptotic form. 

3. SOLUTION OF BOUNDARY INTEGRAL EQUATIONS OF THE TYPE 
(2.8) AND (2.10) IN TERMS OF ANALYTICAL FUNCTIONS 

As is well known [ll], a constructive analysis of boundary-value problems of this kind can be carried 
out using the eigenvalue relation 

1 ’ T (5) -- I 
8 

~InIx-~1d~=6,01n2+~T,(x), xe[-I, I] 
II-, I_ 2 G-- 

n (3.1) 

where IZ 5 0, but the solution in the form of logarithmic potentials is inconvenient to use. We will express 
relation (3.1) in terms of analytical functions of the complex variable z = x + iy. 

We will introduce the following function 

9(z) = z -4z-i 
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In order to ensure uniqueness, we will agree to mean by the root that branch of it which is identical 
with the root that is arithmetic on the real axis when x > 1. The function P(z) is the inverse of the 
Zhukovskii function [12] and maps the region D onto the unit circle 191 s 1. On the section I we 
obviously have 

whence it follows [9] that 

9(z)lr = exp(i arccos X) 

8”(z)lr = T,(x) + iv,(x), n*l 

(3.2) 

where U,(X) are Chebyshev polynomials of the second kind. 
The case n = 0 in relation (3.1) corresponds to the problem of conductive heat flux from an infinitely 

distant source to a plate having a constant temperature. In the plane of the complex variable 9 this 
corresponds to the problem of the conductive heat flux from a source situated at the point 9 = 0 to 
the contour 191 = 1 having a constant temperature. The complex thermal potential of this problem, 
apart from an unimportant additive constant, will be equal to hln??, where h is a parameter which defines 
the total heat flux to the plate. Taking this into account, and also expression (3.2) we can obtain the 
required form of relation (3.1) in terms of the analytical function Q(z), such that 

1 ’ v’(5) 
ReQ(z)=---A 1_1~~~c 

4-T 
(3.3) 

In fact, it follows from relation (3.1) that a density v*(c) of the form 

v*(Q = r,g>, n 3 0 (3.4) 

corresponds to the function 

(3.5) 

Here we have used the fact that when n = 0 the parameter A = 1. This follows from a comparison of 
the behaviour of the function ReQ(z) in the form (3.3) and (3.5) for z = x + 00, taking into account 
the equation [ 131 

’ v*(5) -dG = 6,,n 
-I I--* ‘d--T 

A similar check of the behaviour of the function ReQ(z) at infinity can also be carried out for n 2 1. 
The following assertion follows from the above relations. 

Assertion. The solution of the boundary equation 

ReR(z)lr= T,(X), n>O 

for a function of the form (3.3) can be represented by the expression 

(3.6) 

where 

’ v”(5) 
‘4-T 74 = %,o fi 

-I I- 
(3.7) 
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4. CONSTRUCTION OF THE SOLUTION 

We will construct the solution of problem (2.7)-(2.10) in terms of analytical functions Q(Z) 

connected with Oi(X, y) by the formula 

Oi(x,y) = ReQi(z)+ 

which follows from representations (2.8) and (4.1). 
By (4.2) and (2.10) the following relation is satisfied on the boundary r 

(4.1) 

(4.2) 

+a;2 (4.3) 

Then, for the function s2,,(z), in view of the assertion from Section 3, the following representation 
holds 

Relations (2.7) and (3.7) enable us to determine the constant q. and the final form of the function 
Qo(z) 

6,0x ~,(z)=$ln(29(z)1+~~o~'(Z)~ 40 =- 
m+ln2 

We similarly obtain 

R,(z)=~ln[29(z)]-$[i;,,091~-11(z)+~'+'(Z)l. 41 =-,(,"~~n2) 

(4.4) 

The problem for Q2(z) is somewhat more complex in view of the presence of the non-harmonic 
contribution ofF(x, y) in formula (4.2) and the corresponding contribution in boundary condition (4.3). 
We will express F(x, y) in terms of the functions 9(z). 

First, using the eigenvalue relation (3.1) we obtain, from boundary equation (4.3), (4-l), the form of 
the function u:(c) 

v;(5) = F+kT,(S) 

Substituting this into (2.10) taking relations (3.3)-(3.4) and (4.4) into account, we obtain 

(4.6) 

(4.7) 

m+l 6 
F(x,y)=16 ( +x6,, +“: +~ln[2IQ(z)Jl+~Ren,(z)- 

I 
0=x* +yz+T’ n*(Z) = &p2(Z)+$ 

k+2 - @k-2’(z) 

$$+6k2 
lk-21 1 
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Obviously Q*(z) is a function of the type (3.3) it consists of several terms of the form (3.6), and none 
of them makes a contribution to integral (3.7). It turns out that for this it is sufficient that it should 
make no contribution to the final expression for OZ(x, y). Hence, in our further calculations we will not 
specify the form of the terms related to this. 

Now, from relations (3.2) (4.3) and the form of the function F(x, y) obtained, we can write the 
boundary condition for the function C&(z) 

1 
-Re12*(z)lr + 

+ C+*(x) + &2,(x) Tk+z(~)+T,(x)+~ qk_2,w+7&) 

64 k+l 
kl 

Ik-ll 1 
Applying the assertion from Section 3 to this, we obtain 

4o92w 
Q2(z)=~(m+ln2+I)9(z)+~ln[29(z)1+- 

32x 
--R'(z)+@(z) 

c@‘~(Z)+~‘(Z) +8 6,29’k-2’(Z)+9k(Z) 

kl 1 + 9,k+2(Z)+&29’k-2’(Z) 

k+l Ik-11 64 . 
q* =$(&-2) (4.8) 

Using expressions (4.4)-(4.8) for the functions Q(z), F(x, y) and the quantities qi, from (4.2) we 
obtain 

@a(_~, y) = -6ke - Re : ln 9(z) + 8ka9k(z) 1 
@,(x,y)=!f--Re ~ln9(r)-a9k"(Z)-~9'k-"(Z) 

[ 1 

@,(~,y)=-~Re[ln9(z)+9’(z)l- i 6, Re@j(z)- 

j=O 

9’k-“(z) 
- 

k’ lk-I.1 

where 

@o(z) = 
2w+P2(z)-4X9(Z) 

32(m+In2) 

O,(z)= m+lln62+'[9(z)-x]-~ln9(z) 

O,(z)=-J-+ 
3InP(z) 

64 64(m+In2) 

(4.9) 

(4.10) 

As a check it can be shown that the representations obtained for the functions C$(x,y) satisfy boundary 
conditions (2.10). 

Relations (4.9) and (4.10), taking into account relations (1.6) and (2.5) between the functions 
O&, y) and (3(x, y), give the required analytical representation of the asymptotic expansion of problem 
(1.1) for low Pe, retaining the three leading terms of the asymptotic form. 

Note that the functions 0,(x, y) depend on Pe via the parameter m (see relation (2.10)), which only 
occurs in the quantities qo, q1 and the functions @j(Z). It is obvious that when k > 2 the functions 
Oi(x, y) will generally not depend on Pe. 
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To calculate the overall heat flux to the plate using relations (2.4)-(2.6), it is also necessary to obtain 
the function VT@). This can be done by applying relations (3.4) and (3.5) to the function C&(z), the 
form of which is known. We will have 

(4.11) 

After substituting the second expressions from (4.4), (4.5), (4.8) and expressions (4.6) and (4.11) into 
relation (3.6) we can obtain the quantity Q, and, of course, also the total heat flux 2Q to the plate, 
apart from terms - Pe3 

Q ’ --- 
-- m+ln2 7t 

s,,_P~%+P~~ 46kOi36k2 _pe%+pe2 46k\i”’ I 
Hence, in particular, it follows that the order of the quantity Q with respect to Pe is determined by the 
first non-zero term of expansion (1.2). 

5. COMPARISON WITH NUMERICAL EXPERIMENT AND 
THE RESULTS OF OTHER RESEARCHES 

We compared the asymptotic formulae obtained with numerical calculations. Equation (1.3) was solved 
numerically with k = 0 using the method proposed previously in [14], with subsequent establishment 
of the overall heat flux to the plate, using Eq. (1.4), and the temperature, using Eq. (1.5). It turned out 
that the asymptotic relation Q(Pe) approximates the numerical relationship quite well up to a value of 
Pe = 1, at which the error reaches = 4% (omitting second-order terms increases the error to = 13%). 
The situation is somewhat worse for the temperature, since it is not an integral characteristic of the 
problem but a differential one. A comparison of the temperatures on the contour IzI = 2, Re z > 0 
showed good agreement up to a value of Pe = 0.5, for which the error reached = 5%. 

Note that whenf(x) = const the principal term of the expansion of Q with respect to Pe agrees with 
that obtained previously in [15]. A comparison with the results obtained in [6] shows a difference both 
in the principal term - an additional factor of 2 occurs in [6], and in the second-order term with respect 
to Pe (the first-order term is zero). The good agreement with the results of numerical calculations, as 
mentioned above, suggests that the asymptotic form obtained is correct. For comparison we note that 
the error of the asymptotic formula in [6] for Pe = 1 is of the order of 100%. Here the difference between 
the numerical value of Q derived in [6] and that obtained using the method proposed earlier in [14] 
does not exceed 2%. 

This research was supported financially by the Russian Foundation for Basic Research (98-01-00200). 

REFERENCES 

1. LEVICH, V. G., Physicochemical Hydrodynamics. Prentice-Hall, Englewood Cliffs, NJ, 1962. 
2. RVACHEV, V. L., The pressure on an elastic half-space of a punch having the shape of a strip in plan. Prikl. Mar. Mekh., 

1956,20,2,248-254. 
3. KORNEV, K. and MUKHAMADULLINA, G., Mathematical theory of freezing for flow in porous media. Proc. Roy. Sot. 

London. Ser: A., 1994,447,281-297 
4. SRETENSKII, L. N., The heating of a fluid flow by solid walls. Prikl. Mat. M&h., 1935,2, 2, 163-179. 
5. KHASANOVA, A. Yu and TUMASHEV, G. G., The heating of the potential flow of an ideal fluid by solid walls. IN L%ZOM 

Mutemarih, 1978,6,109-116. 
6. BORZYKH, A. A. and CHEREPANOV, G. P, The plane problem of the theory of heat and mass transfer. Prikl. Mat. Mekh., 

1978,42,5,848-855. 
7. KASHEVAROV, A. V., An exact solution of the problem of convective heat transfer for an elliptic cylinder and a plate in a 

fluid with low Prandtl number. Izv. Ross. Akad. Nauk. MZhG, 1996,3, 26-31. 
8. SHLICHTING, H., Grenzschicht-Theorie. Braun, Karlsruhe, 1965. 
9. JAHNKE, E., EMDE, E and LCjSCH, E, Tafeln hdherer Funktionen. Teubner, Stuttgart, 1960. 

10. CHUGUNOV, V. A. and KORNEV, K. G., The dynamics of ice-generated barriers in the freezing of seeping rocks. 
Inzh.-Fiz. Zh., 1986, E-1,2,305-311. 

11. ALEKSANDROV, V M. and KOVALENKO, Ye. V., Problems of Continuum Mechanics with Mired Boundary Conditions. 
Nauka, Moscow, 1986. 

12. LAVRENT’YEV, M. A. and SHABAT, B. V., Methods of the Theory of Functions of a Complex Variable. Nauka, Moscow, 
1973. 



88 M. M. Alimov 

13. PRUDNJKOV, A. I?, BRYCHKOV, Yu. A. and MARICHEV, 0. 1. Integrals and Series. Nauka, Moscow, 1981. 
14. KORNEV, K. G. and MUKJ-IAMADULLINA, G. I., The effect of seepage on the equilibrium shape of bodies formed by 

artificial freezing. I&z.-Fiz. Zh., 1991,61, 6, 980-985. 
15. KORNEV, K. and MUJU-JAMADULLINA, G., Mathematical theory of freezing for flow in porous media. Flow Through 

Porous Media: Fundamentals and Reservoir Engineering Applications. Proc. Intern. Conf. Moscow, 1992. Inst. Probl. Mech. 
Russ. Acad. Sci., Moscow, 1992,60-63. 

Translated by R.C.G. 


